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Abstract 

The chapter proposes additional solutions that can be implemented within the Comcute 

system to increase its configurability. This refers to configuration of the reliability level 

in the W and S server layers, static or on-the-fly data partitioning and integration, 

configuration of the system for processing in the data streaming fashion, extending the 

system for selection of a project that the client wants to contribute to, ease of migration 

of legacy codes to the system. Finally, an example of a legacy distributed application 

for monitoring client locations and resource usage is presented with suggestions on its 

migration to the Comcute system environment. 
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1.1. Introduction 

The Comcute system was designed [1-4] and implemented [5-9] as a flexible large-
scale system for volunteer computing [10-11], resembling the well-known BOINC [12] 
initiative. Namely, it allows volunteers connecting to the system to fetch codes and 
subsequently input data packets and return results for the packets computed by the 
code to the server side. The system allows definition of several tasks and starting 
computations for several task instances at the same time. Compared to the BOINC 
system, Comcute puts more emphasis on reliability and dependability on the server 
side. The architecture of the system is depicted in Fig. 1.1 and distinguishes the 
following layers: 

1. Z-layer – where the system client defines new tasks, starts instances of 
previously defined tasks, tracks statuses of running tasks and fetches results 
for completed tasks, 

2. W-server layer – the servers supervising execution of tasks. By design, this 
layer is not accessible directly by clients running codes for data packets. For 
each task instance, a subset of W servers is arranged that partitions the task 
among its members. The servers are in charge of the execution. The tasks pass 
input data packets for the task instance to connected S servers beneath them as 
well as collect and merge results obtained from the S layer. 



3. S-server – these are distribution servers that are exposed to clients who fetch 
execution code and subsequent data packets and return results for these data 
packets. 

4. I-client level – this is an untrusted layer of regular clients fetching and 
returning results to the system. 

 

Fig. 1.1. Architecture of the Comcute System 

1.2. Configurability 

This section discusses the flexibility of the system in terms of several aspects: 

1. configuration of the reliability level in the W and S server layers, 

2. static or on-the-fly data partitioning and integration, 

3. configuration of the system for processing in the data streaming fashion, 

4. extending the system for selection of a project that the client wants to 
contribute to, 

5. ease of migration of legacy codes to the system. 

1.2.1. Distribution of data among W and S servers 

The system architecture has been designed in such a way that allows tuning the trade-
off between reliability and performance at two levels: 

1. W servers – after a task has been defined and scheduled for execution, a 
subgroup W' of group W is created and parts of the initial data set are 
assigned to the members of the group. Note that data packets for a task should 
be distributed to more than one W server to allow for better geographical 
dispersion. 
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a. Additionally, if required, task execution could be launched in many 
copies at the W server level. In this case, more than one W' subgroup 
would be formed. At the cost of increased resource utilization, the 
reliability level would be increased as such copies would most likely 
be executed in very geographically distributed regions. 

2. S servers – depending on the required redundancy level, each server could 
serve more copies of a data packet to incoming clients. However, this is 
hazardous from the reliability point of view as an active client connecting 
many times to the same S server could try to capture all copies of the same 
data packet and provide incorrect results for them. Assuming there is no other 
copy distributed to another S server, the system would not be able to detect 
such an attack and even identify the IP of the offender. From this point of 
view, copies of a data packet should be rather distributed among different W 
servers and underlying S servers connected to them. This gives a better 
possibility to distribute data packets geographically. 

1.2.2. Static or on-the-fly data partitioning and result integration 

The initial version of Comcute performs the following steps regarding task definition 
and execution: 

1. definition of a task, 

2. launching an instance of the task, 

3. provision of input data for the task. This can also be done dynamically at 
runtime, as long as the task has not terminated. This allows the type of 
processing similar to data streaming, 

4. data partitioning (before execution starts), 

5. distribution of data packets to S servers, clients and collecting results the data 
packets at the W server level, 

6. after all data packets have been processed by the clients (including the 
redundancy level requirement) launching data integration. 

7. After data integration has been finished, store the final result in a database for 
the Comcute client to fetch it later. 

While this approach works well for most applications, such as: 

1. finding prime numbers within the given range (the size of output data is 
manageable), 

2. finding potential solutions for yet unproved theorems such as Collatz's 
theorem (in this case output data appears only if input data matching the given 
theorem is found), 

3. finding big numbers matching certain criteria such as big prime numbers, 
Mersenne's numbers etc. 

it may not be adequate in all cases. Namely, the following constraints may appear: 

1. data size limitations: the total size of output data for all data packets may be 
difficult to store at once.  



2. the application may require partial data to show up as the application is still 
running. For example, the application for reporting subsequent locations and 
resource usage of the client computer [13] works in such a way that: 

a. each client I receives a data packet; its content is ignored, 

b. the client sends back its location and usage of the resources such as 
the processor and memory. 

In this case, it would be preferable to monitor the location of the client (and 
possibly the client leaving allowed space) as the application is running (there are 
data packets) rather than after all the packets have been processed. 

To overcome these limitations, there are several solutions possible: 

1. partitioning of the initial data set into disjoint data sets on which several 
instances of a task would be based. In this case, effectively the initial task is 
partitioned into several subtasks. This solution has a drawback that it needs to 
be done manually with the knowledge of how fast particular data packets for 
the given task can be processed. 

2. partitioning and merging on-the-fly. 

In the latter case, the algorithm can work as follows: 

1. definition of a task, 

2. launching an instance of the task, 

3. provision of input data for the task. This can also be done dynamically at 
runtime, as long as the task has not been terminated. This allows the type of 
processing similar to data streaming, 

4. data partitioning up to the desired and defined number of data packets (before 
execution starts). After the given number of data packets has been generated, 
the packets are passed to W and subsequently S servers and the clients. In the 
meantime, generation of a next batch of data packets proceeds effectively 
overlapping data generation and communication. This also speeds up the start 
of processing by the end users. Finally, it allows to have precise control over 
the data size footprint for the given application. This means, that based on 
task priorities, more or less data space during execution could be granted. 
Consequently, based on these settings allowing a larger or fewer number of 
applications running concurrently and in parallel could be possible.  It is clear 
that this change clearly contributes to increasing the processing flexibility for 
not only a single but all applications running at the given moment. 

5. distribution of data packets to S servers, clients and collecting results the data 
packets at the W server level, 

6. after a certain number of data packets have been processed by the clients 
(including the redundancy level requirement) or after a certain time limit since 
the last data integration moment has elapsed – launch data integration. In this 
case, there must be a global state of the already integrated data packets to 
which results of new data packets will be added. 

7. After data integration has been finished, store the final result in a database for 
the Comcute client to fetch it later. 



Additionally, merging partial results as the application is running may influence new 
data packets being generated. For instance, results of analysis of a particular data range 
may result in cutting off another data range in which it is known at this point in time 
that no solution will be found. This can also reduce the total running time of the task 
considerably. 

This brings the question related to implementation – namely how dynamic partitioning 
and merging will be performed: 

1. partitioning: the question arises how the state of the already integrated results 
should be stored. Since integration is performed by a partitioner object then 
the data itself can be stored in a database or file(s) with proper references 
from the partitioner itself holding control variables denoting where the 
integration finished. In this case, the size of the partitioner object can be kept 
small and the partitioner object can be serialized and deserialized when it is 
needed. Copies of such footprints should also be saved in case of server 
failures. Alternatively, such control variables can also be stored in a database 
or files in which case the partitioner object should be able to restart from the 
state saved there. 

2. merging: analogous to the partitioning process regarding saving the state of 
the data which should be stored in a database/files. The same applies to 
retrieving control variables/information about the state. 

1.2.3. Data streaming 

While originally processing in the system has been designed to process input data files 
uploaded before simulation, it can be extended to support data streaming. This can be 
accomplished in two ways without rewriting the internals of the system in the W server 
layer: 

1. Currently, until computations are still running, it is possible to upload new 
data packets that will be processed as they arrive. Consequently, it would be 
possible to install a proxy that would periodically receive data packets from 
an external source and would forward to the Comcute system. This would, 
however, require an API to do so for a particular task instance. The following 
API would suffice along with login/password information: 

newDataSubmission(taskInstanceId, loginCredentials, data); 

2. It is possible to split the initial data externally into several tasks and 
correspondingly run more task instances as new input data becomes available.  

Additionally, especially for scenario 1 above, it should be defined when processing of 
data streaming should end. Two possibilities can be implemented here: 

1. the client externally marks the task instance as finished indicating it will no 
longer accept new data packets and will change its state to “COMPLETED” 
after all current data packets have been processed, 

2. in the task instance definition it will be denoted what will be the total 
expected data size passed to the task instance after which it will change its 
state to “COMPLETED”. 



1.2.4. Project selection 

Currently, the system works in such a way that tasks defined at the Z and W server 
layers are completely transparent to clients connecting to the system and wishing to 
contribute to computations. This stems from the assumed design principle that the W 
server layer should be completely invisible to clients and the S server layer should act 
as the distribution layer only and should know nothing about the content of the data 
forwarded from W to I and vice versa. 

From the point of view of the client, however, it may be preferable to know to which 
task/project the client is contributing or even select the task. This is possible but would 
need the following extensions in the system internals - extending: 

1. the knowledge of the S servers to know about data packets and association of 
data packets with particular tasks, 

2. the initiation phase so that the client fetches a list of available tasks and 
information about these. Two alternative solutions are now possible: 

a. the client (upon each connection) sends an identifier of the task it is 
interested in and the S server responds by sending a data packet for 
this particular task. 

b. the client sends back its interest in performing computations for a 
particular task to the S server. The S server then keeps a map of 
recently connected clients I and tasks to which the clients have 
subscribed. As soon as a client connects to the S server, it needs to 
introduce itself and the S server sends back an appropriate data 
packet. However, this requires the need for the client to introduce 
itself which may be a problem for a client running within a web 
browser (such as unsigned applet). For this reason, solution 1 above 
may be preferable. 

1.2.5. Code migration to volunteer based processing 

The current processing paradigm in the Comcute system resembles the well-known 
master-slave [14] or map-reduce [15] paradigm in which input data is divided among 
slave nodes and then merged (reduced) by the master. In Comcute, it is internally 
distributed further as more W and S servers are involved in parallel solving of the same 
task instance using distinct data packets.  

This paradigm is then reflected in the API for the Comcute programmer, namely the 
need for provision of: 

1. partitioner, 

2. linker, 

3. computational code. 

Each master-slave program can be naturally mapped to this paradigm requiring just 
translation of the original code into the code used in the Comcute system (such as Java 
or JavaScript). 

It is interesting, though, how other popular parallel processing paradigms [14] could be 
mapped to the Comcute system: 



1. SPMD – Single Program Multiple Data in which neighbors do need to 
exchange boundary information among one another between iterations of the 
main processing loop. Unfortunately, due to dense communication in this case 
and comparable communication times and computational times (of a single 
iteration) even on a cluster, it is not possible to effectively parallelize it in the 
Comcute system. For instance, computing of a single iteration of a simulation 
on a modern processor can take in the order of a fraction of a second up to 1-2 
seconds which can be much shorter than the communication time with the 
server. However, it is possible to approach the  problem from a different 
perspective i.e. launch complete simulations with different input data sets on 
different client computers. As an example, a simulation for fire spreading was 
developed for the Comcute system. In each simulation, a different set of 
locations for fire stations is examined in the context of fire spreading. Each 
such simulation is launched separately on a different client computer while 
the Comcute system integrates results for those simulations. Precisely, each 
simulation results in information how effective the locations of the fire 
stations were. Finally, the Comcute system can determine the best locations of 
planned fire stations assuming potential various places where fire starts, 
various wind conditions etc. 

Thus, in the context of migration of SPMD simulations to the Comcute 
system, this would require translation of the simulation code to one of the 
languages used by the client side in the Comcute system (such as Java, 
JavaScript) and proper definition of input data so that various data sets could 
be generated when partitioning the initial data. For instance, for the 
aforementioned fire spreading simulation, various data packets with various 
locations could be generated. 

2. Pipelining – similarly to SPMD this scheme is not well suited to running in 
the Comcute system unless: 

a. communication times are much smaller than times of computations 
in successive stages of the pipeline, 

b. clients do have specialized hardware that makes processing of 
various stages much faster (such as specialized GPU or other 
devices). This, however, would require further extension of the 
system with more knowledge about the client. In particular, the client 
would need to pass to the server not only the information what 
technologies it can use but also how effective its hardware for 
particular types of computations is. 

It should be noted that, as in the SPMD case, legacy pipelining code could be 
migrated to the Comcute system to perform distinct simulations using various 
input data sets. 

3. Divide-and-conquer – this paradigm is much more promising than the 
previous two. First, it is naturally expanded into a tree of subproblems for 
which results need to be then integrated in the top part of the tree. This means 
that the top of the divide-and-conquer tree in the initial phase can be migrated 
to the partitioner code, lower part of the tree to computational code and the 
top of the divide-and-conquer tree in the final phase can be migrated to the 
linker code. Partitioning, linking and computations must be provided in the 
divide-and-conquer computations anyway so it comes down to running proper 



translators and minor modifications of the code to run within the partitioner, 
linker and client framework.   

Additionally, as in client-server frameworks, it may be desirable to provide a 
communication framework for encapsulation of data passed between the partitioner, 
computational code and the linker for the various languages supported on the client 
side in the Comcute system. Namely, it could assist in serializing/deserializing data 
that is passed between these components. 

1.3. Example – an application for monitoring locations and 

resource usage of client computers 

Following the discussion on the configurability presented in previous sections, it is 
now discussed how to implement and configure a real application that is aimed at 
monitoring locations and resource usage of clients connecting in the Comcute system. 
Rather than asking each client to perform computations for a data packet, in this case 
each data packet is treated as kind of a request from the server side to the client to 
respond with its location and resource usage statistics. From this point of view, it is a 
different application from the mainstream Comcute examples. 

1.3.1. Functional specification 

Functional specification of the application is depicted in Fig. 1.2. where usecases from 
the operator and client points of views are presented. 

 

Fig. 1.2. Application usecases 



1.3.2. Design and implementation of legacy code 

Fig. 1.3 depicts an interaction diagram for communication between the client and the 
system with registration of new location and usages (operation register of a Web 
Service) and monitoring (operations checkifmoved() and checkusage()) as designed 
in [13]. 

The author has implemented the solution which is based on three cooperating 
applications: 

1. ComcuteClientCheckerJavaApplication – an application for the system operator 
that allows him/her to monitor locations and states of resources connected to 
the system. 

2. ComcuteClientMonitorClientJavaApplication – an application run by the client 
that allows registration of the client location and resources usage as well as 
the IP of the client. 

3. ComcuteClientMonitorEJBModule1 – a server side application allowing clients 
to invoke Web Services to submit information about location and resource 
usage. 

 

 

Fig. 1.3.  Interaction diagram for the application 

ComcuteClientCheckerJavaApplication 

The main part of the application is depicted in Lst. 1.1. This Java client application 
invokes operation monitorAll of a Web Service on the server side. This allows an 
operator (who needs to provide a login and a password) to monitor clients connected to 
the system. The application displays information about locations of the clients along 
with information about clients leaving the desired and allowed space and resource 
usage. The application calls the server every 5 seconds. 

Lst. 1.1. ComcuteClientCheckerJavaApplication source code 

public class Main { 

 

    /** 

     * @param args the command line arguments 

     */ 

    public static void main(String[] args) { 

        // TODO code application logic here 



 

        // check the status 

        String status; 

 

        try { 

       for(int i=0;i<100;i++) { 

          status=monitorAll("login","password"); 

          System.out.println(status); 

          Thread.sleep(5000); 

        } 

        } catch (java.lang.InterruptedException e) { 

 

     …. 

        } 

    } 

 

    private static String monitorAll(java.lang.String login, java.lang.String password)  

    { 

      clientmonitor.ClientMonitorWebServiceService service  

            = new clientmonitor.ClientMonitorWebServiceService(); 

        clientmonitor.ClientMonitorWebService port = service.getClientMonitorWebServicePort(); 

        return port.monitorAll(login, password); 

    } 

} 

 

ComcuteClientMonitorClientJavaApplication 

Application ComcuteClientMonitorJavaApplication allows each client to submit 
information about location, IP address as well as usage of processor and disk space. 
Each client is identified by a MAC address. The application fetches the client IP 
address which passes along with GPS location and resource usage. Approximate 
location can also be determined based on the IP address [17,18]. Main parts of the 
application are shown in Lst. 1.2. 

Lst. 1.2. ComcuteClientMonitorClientJavaApplication source code 

public class Main { 

 

    /** 

     * @param args the command line arguments 

     */ 

    public static void main(String[] args) { 

        // TODO code application logic here 

 

        // first get the address of this Comcute client 

 

   byte mac []=null; 

   String IP=null; 

        try 

           { 

      Enumeration eth = NetworkInterface.getNetworkInterfaces(); 

 

      while (eth.hasMoreElements()) 

      { 

        NetworkInterface eth0 = (NetworkInterface) eth.nextElement(); 

 

        mac = eth0.getHardwareAddress(); 

 



        // check if the mac is not null 

        if (!(mac == null)) break; 

    

      } 

      // get the IP 

      IP =InetAddress.getLocalHost().getHostAddress(); 

        } 

    catch (Exception e) 

    { 

      e.printStackTrace(); 

    } 

 

 

if (mac!=null) { 

 

    StringBuilder sb=new StringBuilder(); 

    for (int k = 0; k < mac.length; k++) {// convert the address to a string 

                sb.append(String.format("%02X%s", mac[k], (k < mac.length - 1) ? "-" : "")); 

    } 

 

    String macString=sb.toString(); 

    System.out.println("Found MAC address of my computer: "+macString); 

    System.out.print("This address will be used as an id when passing information about location 

and resource usage."); 

    // now register a location in the Web service 

    Random randomGenerator = new Random(); 

    double currentX,currentY,currentZ; 

    try { 

      for (int i=0;i<100;i++) { 

        currentX=100*randomGenerator.nextDouble(); 

        currentY=100*randomGenerator.nextDouble(); 

        currentZ=10*randomGenerator.nextDouble(); 

 

        System.out.println("Sending my current location   

("+currentX+","+currentY+","+currentZ+" to Comcute"); 

      register4(macString,IP,50.0,50.0,currentX,currentY,currentZ); 

      Thread.sleep(5000); 

 

          } 

 

        }  catch (java.lang.InterruptedException e) { 

 

        e.printStackTrace(); 

        } 

      } 

    } 

 

    private static String register4(java.lang.String macAddress, java.lang.String ip, double 

diskUsage, double cpuUsage, double gpsx, double gpsy, double gpsz) { 

        clientmonitor.ClientMonitorWebServiceService service = new 

clientmonitor.ClientMonitorWebServiceService(); 

        clientmonitor.ClientMonitorWebService port = service.getClientMonitorWebServicePort(); 

        return port.register4(macAddress, ip, diskUsage, cpuUsage, gpsx, gpsy, gpsz); 

    } 

} 

 



ComcuteClientMonitorEJBModule1 

The server-side ComcuteClientMonitorEJBModule1 application was developed as Web 
Services deployed in GlassFish. For connected clients it stores information such as IP 
addresses, locations and resource usage.  

Operations register* allow submission of information while operations monitor* allow 
fetching information (after provision of login and password) along with information 
about clients leaving desired locations. Main parts of the application are shown in Lst. 
1.3. 

Lst. 1.3. ComcuteClientMonitorEJBModule1 source code 

@WebService() 

@Stateless() 

public class ClientMonitorWebService { 

 

    static HashMap currentLocations=new HashMap(); 

    static HashMap diskUsages=new HashMap(); 

    static HashMap cpuUsages=new HashMap(); 

    static HashMap IPs=new HashMap(); 

 

 

   

  

    /** 

     * Web service operation 

     */ 

    @WebMethod(operationName = "monitorAll") 

    public String monitorAll(@WebParam(name = "login") 

    String login, @WebParam(name = "password") 

    String password) { 

 

        // monitor all locations if any is outside of where it should be 

 

        StringBuilder retVal=new StringBuilder(); 

 

        retVal.append("Statuses of clients:"); 

         

        Iterator iterator = currentLocations.keySet().iterator(); 

 

        while(iterator. hasNext()){ 

            String macAddress=(String)iterator.next(); 

            GPSLocation clientLocation=(GPSLocation)currentLocations.get(macAddress); 

 

            if ((clientLocation.gpsx>90) || (clientLocation.gpsy>90) || (clientLocation.gpsz>8)) { 

                retVal.append(" Client "+macAddress+" outside of allowed space : ("+ 

clientLocation.gpsx+","+clientLocation.gpsy+","+clientLocation.gpsz); 

 

            } else 

                retVal.append(" Client "+macAddress+" in allowed space : ("+ 

clientLocation.gpsx+","+clientLocation.gpsy+","+clientLocation.gpsz); 

 

           String IP=(String)IPs.get(macAddress); 

           String diskUsage=((Double)diskUsages.get(macAddress)).toString(); 

           String cpuUsage=((Double)cpuUsages.get(macAddress)).toString(); 

 

           retVal.append(" IP="+IP+" diskUsage="+diskUsage+" CPUUsage"+cpuUsage); 

        } 

        



        return retVal.toString(); 

 

    } 

    /** 

     * Web service operation 

     */ 

    @WebMethod(operationName = "register_4") 

    @RequestWrapper(className = "clientmonitor.register_4") 

    @ResponseWrapper(className = "clientmonitor.register_4Response") 

    public String register(@WebParam(name = "macAddress") 

    String macAddress, @WebParam(name = "IP") 

    String IP, @WebParam(name = "diskUsage") 

    double diskUsage, @WebParam(name = "cpuUsage") 

    double cpuUsage, @WebParam(name = "gpsx") 

    double gpsx, @WebParam(name = "gpsy") 

    double gpsy, @WebParam(name = "gpsz") 

    double gpsz) { 

 

        // add the location of the client to the hash map 

        currentLocations.put(new String(macAddress), new GPSLocation(gpsx,gpsy,gpsz)); 

 

        // add the IP and the usages 

        IPs.put(new String(macAddress), new String(IP)); 

 

        diskUsages.put(new String(macAddress), new Double(diskUsage)); 

        cpuUsages.put(new String(macAddress), new Double(cpuUsage)); 

 

        return null; 

    } 

 

} 

 

1.3.3. Running the application 

The following figures show screenshots of the working application run within the 
Netbeans environment. Applications run in the following order: 

• ComcuteClientMonitorEJBModule1,  

• ComcuteClientMonitorClientJavaApplication (at least one),  

• ComcuteClientCheckerJavaApplication.  

Each client submits its data (location and resource usage) every 5 seconds and a system 
operator monitors states of the clients, in particular clients leaving the desired space. 



 

Fig. 1.4. Screenshot - deployment 

 

Fig. 1.5.  Screenshot – sending data to server 



 

Fig. 1.6. Screenshot – fetching client data 

1.4. Migration and configurability in the Comcute environment 

We now discuss how to migrate and configure an application in the Comcute 
environment. 

It should be noted that a client application must be run in such a way that a unique 
identifier is possible to fetch (such as the MAC address [16]). Furthermore, even 
though reporting data is quick and does not need time, each client should introduce 
intervals (such as the 5 seconds or more in the testbed application) to prevent from 
flooding the server with requests. Additionally, in Comcute, each data packet would 
correspond to one client reporting one location. Assuming there are N clients reporting 
its location every INTERVAL seconds then for time T, N*(T/INTERVAL ) data packets 
would be needed. As long as the application is running, new data packets can be 
provided to extend the application working time. 

Furthermore, proper integration of results would be required on the server side. 
Namely, successive locations of a client should be stored (either one location per client 
or a history of locations) as soon as available to find out the client leaving the allowed 
space as soon as possible. Thus, rather than defining a certain number of data packets 
after which integration is performed, an interval should be used. In the former case, if 
intervals between data packet processing are large, so will be the interval between 
integration actions. In the latter case, it is defined a priori without flooding the server 
as well. 
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